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a b s t r a c t

The output of stochastic models is a distribution of values, rather than a single value such

as in deterministic models. Local sensitivity analyses of such models typically ignore the

higher moments of the output distribution and instead use the distribution mean to rep-

resent model output. This might be simplistic, since the shape of the distribution might

also be sensitive to changes in model parameters. Here, we construct a simple sensitivity

index that captures also the shape of the output distribution, by incorporating its variance

in addition to its mean. To evaluate its performance, we reconstructed an existing stochas-

tic individual-based model for mosquitofish (Gambusia holbrooki) population. We compared

the performance of the new sensitivity index to the standard sensitivity index (∂Y/∂P) that

was calculated using the mean of the output distribution, by ranking model parameters

according to their impact on the output. Sensitivity analyses using both methods identified

different parameters as the most influential on model output, and rankings were incon-

sistent between methods regardless of the number of simulations used for generating the

output distributions. It is shown that the new index indeed captured better the effect of

parameters on model output since it accounted for the variance of the output distribution.

© 2008 Elsevier B.V. All rights reserved.

1. Background

Sensitivity analysis (SA) is a step in the modeling process
aimed to rank model parameters, initial values of state
variables, sub-models, or even processes (Brugnach, 2005)
according to their impacts on model results (Jorgensen, 1994;
Grimm and Railsback, 2005). A parameter that the model is
sensitive to is one that minor changes in its value would result
in major changes in model output or inference. SA has an
important role in the modeling process, since in many cases,
parameter values are uncertain (Cariboni et al., 2007) due to
the complexity of natural systems or the ways that they were

∗ Corresponding author. Tel.: +972 48293471; fax: +972 48295696.
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obtained. In some cases, model parameters are estimated by
empirical observations or field experiments, where there is at
least an estimate of the degree of uncertainty around the esti-
mate (Fieberg and Jenkins, 2005). In many other cases, initial
parameter values are derived from expert opinion, which is
typically characterized by large uncertainty (Haimes, 2004; Ray
and Burgman, 2006). When high uncertainty coincides with
high sensitivity in model parameters, the reliability of model
predictions may be very low.

SA is performed in order to answer one or more practical
needs arising in the modeling process (Cariboni et al., 2007).
The two most common goals are research prioritization and
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reducing complexity. In research prioritization, researchers
need to decide which model parameters need to be better
estimated (typically those with larger impact on the model).
Reducing model complexity can be achieved by filtering out
parameters or processes that have minor effects on model
outcome (Lawrie and Hearne, 2007).

In general, SA is performed by modifying the values
of model parameters by various quantities, re-running the
model, and computing the changes in model output relative
to its output with initial parameter values (“reference run”). At
its most simple form, SA is performed by changing parameter
values one at a time, while fixing all other parameter values.
This process, known as local SA, detects the net effects of
single parameters. Global SA is a group of more robust tech-
niques, altering groups of parameters simultaneously, in order
to detect the effects of interactions between different parame-
ters (Fieberg and Jenkins, 2005; Ginot et al., 2006; Cariboni et al.,
2007; Chu et al., 2007). In local SA, the sensitivity of a model to
a single parameter Pi is calculated as (Jorgensen, 1994; Caswell,
2001; Cariboni et al., 2007):

Sa = ∂Y

∂Pi
(1)

where Sa is the sensitivity index of the state variable Y (rep-
resenting model output) to the parameter Pi. In practice, the
partial derivatives in Eq. (1) are calculated as the differences
between original (reference) and new parameters and state
variables, in incremental ratios.

In deterministic models, the outcome of a specific set of
parameters is essentially the same for identical starting con-
ditions, therefore ∂Y is null. In contrast, in stochastic models
the output varies between simulations, even when parame-
ters and starting conditions are identical, due to variability
introduced by stochastic model terms. In such cases, a sin-
gle simulation for assessing the sensitivity of the model to a
specific parameter is insufficient, and a set of simulations is
needed in order to generate an entire distribution of model
outputs. Thus, the computation of sensitivity in stochastic
models involves the comparison of two distributions rather
than two single values.

The common approach for comparing a pair of model out-
comes is to calculate the mean values of the resulting output
distributions and use them for the computation of the numer-
ator terms in Eq. (1) (Brugnach, 2005; Ginot et al., 2006). This
solution might be sufficient only in cases where the output
variance is insensitive to parameter values. Since the distribu-
tion of outputs is unknown before running model simulations,
using the averages while ignoring the shape of the distribution
might lead to inaccurate results, especially when differences
between the sensitivities to different parameters are slight.

A more thorough approach for SA of stochastic models
would also account for the shape of the distribution. Differ-
ent output distributions might have the same means, but very
different variances, therefore the sensitivity score of the cor-
responding parameters cannot be assumed equal, since this
essentially means that the model reacts differently to changes
in different parameters. A potentially better approach would
be to account for the variance of the distribution in addition
to its mean, thus incorporating the second moment of the dis-

tribution in addition to its first. In global SA, this is sometimes
done in ANOVA-related methods (Chaloupka, 2002; Ginot et
al., 2006), and other methods (Campolongo et al., 2007). We
suggest that the t-statistic (Underwood, 1997) should be used
for this task. The t-statistic for a pair of distributions is denoted
by:

t = Ȳalt − Ȳref√
(s2

alt + s2
ref)/n

(2)

where t is Student’s t-statistic of two equal sized samples, Ȳalt

is the mean of the state variable distribution generated from
an altered parameter, Ȳref is the mean of the state variable dis-
tribution generated from the original (reference) parameter, n
is the sample size, and salt and sref are the standard deviations
of those distributions. The larger the absolute value of t is, the
greater the difference between the two distributions.

Since t accounts for the shape of the two distributions in
addition to their means, it can be assumed that it will display
the true difference between them better than the mean values
only. Assuming discrete parameter values and replacing ∂Y
with ty, a local sensitivity index around a reference parameter
value that is based on t can be formed based on Eqs. (1) and
(2):

St = ty

(palt − pref)/pref
= |Ȳalt − Ȳref|

(palt − pref)
√

(s2
alt + s2

ref)/n
pref (3)

where palt and pref are the new and the reference parame-
ter values, respectively, ty is the t-statistic of the new and
reference output distributions, and St is the t-based local sen-
sitivity index. The denominator is divided by pref in order to
normalize the values of different parameters, to allow compar-
isons. This approach is somewhat similar to using analysis of
variance (ANOVA) for assessing the differences between the
effects of more than two parameters (Chaloupka, 2002; Ginot
et al., 2006). But, since t is used here only as a measure of para-
metric distance, and no actual statistical test is performed (in
contrast to the F-test in ANOVA), there is no need to satisfy
the requirements of normality and variance equality that are
necessary for application of ANOVA.

Another aspect of SA for stochastic models that is gener-
ally overlooked is the effect of number of simulations on the
results. Since statistical moments used for stochastic SA are
only estimates (as the true distribution is unknown), their val-
ues depend on the number of simulations that were used to
generate the output distribution. This essentially leads to dif-
ficulties in interpreting SA results, because different numbers
of simulations may yield different parameter rankings, with
increased accuracy achieved only when the number of sim-
ulations is large. Therefore, it is desirable that the SA will be
performed on a distribution that is based on a sample size that
is large enough, so that the inherent stochasticity of the model
will not affect SA results.

The objective of this research is to introduce, explore, and
validate the application of St as a better measure of local sen-
sitivity in stochastic models in small sample sizes. In order to
do so, we conducted a large number of simulations using an
existing stochastic model of fish population (Ginot et al., 2006).
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We then compared the performance of the standard sensitiv-
ity index, Sa, to that of the new index, St, in a local SA, at
varying numbers of simulations.

2. Methods

2.1. Model description

The mosquitofish stochastic individual-based model devel-
oped by Ginot et al. (2006) was reconstructed for the purpose
of this study (Fig. 1). The model simulates the population
growth of mosquitofish (Gambusia holbrooki) in experimental
tanks. The model has eight parameters (Table 1) and one state
variable—population size. The model includes three kinds of
individuals: juveniles, adult males, and adult females. The
time step of the model is one day. The processes affecting the
life of each individual depend on its kind, and are: (1) survival;
(2) age growth; (3) length growth; (4) puberty for juveniles; and
(5) offspring production for females.

Fig. 1 – Schematic representation of the mosquitofish
model (Ginot et al., 2006) for juveniles (top) and adults
(bottom). Notice that males undergo only part of the
process.

Table 1 – Parameter values for the mosquitofish model,
adopted from Ginot et al. (2006)

Parameter [unit] Reference value

Growth rate [day−1] 0.9548
Maximum length [mm] 60
Puberty threshold [mm] 15
Adult survival [%, day−1] 0.9965
Juvenile survival [%, day−1] 0.9607
Gestation duration [days] 30
Fecundity threshold [mm] 24
Fecundity [juveniles mm−1] 2

The survival of an individual is tested each time step
according to its survival probability, which is a parameter. The
increase in length between two time steps is defined by the
following function:

Length(i + 1) = Length(i) + a

(
1 − Length(i)

K

)
(4)

where Length(i) [mm] is fish length at day i, a [day−1] is the
growth rate parameter, and K [mm] is the maximum length
parameter. Therefore, growth rate decreases linearly accord-
ing to length.

Puberty and breeding are length dependent. When the
length of a juvenile exceeds the puberty threshold parame-
ter, it becomes an adult, either male or female according to a
1/1 sex ratio. Similarly, when the length of a female exceeds
the fecundity threshold parameter, and additionally, a certain
time lag has passed since its last parturition (denoted by the
gestation duration parameter), it reproduces offspring. The
number of offspring is determined by

Noffspring = Fecundity (Length(i) − Fthresh) (5)

where Fecundity [juveniles/mm] is a parameter that repre-
sents the number of offspring created per unit length, and
Fthresh [mm] is the fecundity threshold parameter. The off-
spring are assigned a random length between 7 and 8 mm.

Model simulations begin with a population of 10 females,
with lengths varying randomly between 22 and 26 mm, and
ages between 0 and 30 days. Additional stochasticity in indi-
vidual specific parameters in the original model (Ginot et al.,
2006) was not incorporated here, since we wanted to account
only for the stochasticity introduced by model structure. Sim-
ulation periods were 120 days.

2.2. Sensitivity analysis

Model simulations were repeated 50, 100, 500, 1000, and 5000
times to assess the effects of the number of simulations on the
SA. Model parameters were altered one at a time by multiply-
ing their reference value by 1.15 (i.e. +15%). The state variable
of interest was the population size at day 120. The average and
standard deviation of each state variable distribution were cal-
culated for each set of repetitions. Two sensitivity indices, Sa

and St, were calculated for all parameters. Model parameters
were ranked according to their sensitivity index value. Param-



466 e c o l o g i c a l m o d e l l i n g 2 1 3 ( 2 0 0 8 ) 463–467

eter rankings generated by the two sensitivity indices were
compared, in order to identify potential differences between
these two approaches. Additionally, parameter rankings gen-
erated in different numbers of simulations were compared
within each index, in order to identify the number of simu-
lations from which additional simulations will not affect the
parameter rankings.

3. Results

Model simulations over 120 days with the starting conditions
described above resulted in an exponential population growth
of mosquitofish (Fig. 2). Each simulation result differed from
the others due to the stochasticity of the model. Population
size at year 120 was sensitive to changes in all parameter val-
ues at various levels, and the sensitivity was affected by the
number of simulations (Fig. 3). In all cases, Sa and St generated
inconsistent parameter rankings.

According to Sa, the model was most sensitive to growth
rate, followed by fecundity threshold. In contrast, according to
St, the model was most sensitive to fecundity threshold, fol-
lowed by growth rate. Therefore, the two methods differ in the
rankings of the two most influential parameters (Fig. 4). This
is nicely explained by the features of these methods: mod-
ifying growth rate affects the difference between means (of
the reference and modified distributions, respectively) more
than modifying fecundity threshold, making growth rate the
most influential parameter in Sa. However, Sa overlooks an
important trait: modifying growth rate increases output vari-
ance (and even leads to some overlap between reference and
modified distributions), while fecundity threshold decreases
output variance (Fig. 4), making fecundity threshold the most
influential parameter in St.

In both metrics, the number of simulations affected param-
eter rankings, for the parameters that had small impact on
model results (Fig. 3). For St, the ranks of fecundity thresh-
old, growth rate, and juvenile survival remained constant

Fig. 2 – Changes in mosquitofish population size during a
period of 120 days in 10 different repetitions. Each line
represents a different repetition with identical starting
conditions, in order to represent the stochasticity of the
model.

Fig. 3 – Local sensitivity values of the population size at day
120 at different numbers of simulations. Bars represent Sa

(left column) and St (right column). Each row represents a
different number of simulations. Parameters are numbered
in the following order: (1) growth rate, (2) maximum length,
(3) puberty threshold, (4) adult survival, (5) juvenile
survival, (6) gestation duration, (7) fecundity threshold, and
(8) fecundity.

regardless of the number of simulations (ranked 1st, 2nd, and
8th, respectively). For Sa, the ranks of growth rate, fecundity
threshold, and maximum length remained constant regard-
less of the number of simulations (ranked 1st, 2nd, and 3rd,
respectively). Increasing the number of simulations from 1000
to 5000 had no effect on the rankings in both metrics.

4. Discussion

Sensitivity analysis of stochastic models that is based on aver-
age values of the output distributions may not be robust, since
it ignores changes in the shape of the output distribution.
Sensitivity indices that account for statistical moments other
than the average are potentially more effective in capturing
these stochastic effects, thus they may be considered concep-
tually better than using the average solely. This was shown
here through a rather simple stochastic ecological model, the
mosquitofish IBM by Ginot et al. (2006). The sensitivity index
suggested here, St, although simple, offered more information
on the sensitivity of model outputs to input parameters than
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Fig. 4 – Output distributions (population size at day 120) of
three groups of model simulations based on 1000
repetitions: using reference parameters (hollow bars,
middle), following alternation of the growth rate parameter
by +15% (light gray bars, right), and following alternation of
the fecundity threshold parameter by +15% (dark gray bars,
left). Arrows indicate the locations of the distribution
means. The overlap area between the reference output
distribution and the output distribution based on altered
growth rate is marked by a black rectangle.

Sa did. The difference in parameter rankings between the two
indices was evident, and occurred at all levels of change and
simulation numbers.

The number of simulations affected both sensitivity
indices. This is because both indices are based on estimates of
statistical moments of the output distributions, and these esti-
mates are essentially better when the number of simulations
increases (Underwood, 1997). The effect of number of sim-
ulations is more pronounced when the differences between
sensitivities to output parameters are small, since in these
cases the inherent stochasticity of the model might obscure
the subtle differences between parameter effects. However,
at least in the mosquitofish model, the three most influen-
tial parameters were insensitive to the number of simulations,
since their impact on model output was strong.

The effectiveness of St is expected to be pronounced in
models that have at least a moderate amount of inherent
stochasticity (i.e. there are different sources of stochasticity,
either by parameters or by model structure). In deterministic
models, and in models with limited stochasticity, St converges
with Sa, since the output variance is non-existent (determinis-
tic models), correlated with the output means (linear models),

or unaffected by the stochastic terms of the model (models
with a single source of stochasticity).

Accounting for higher statistical moments other than the
mean is desirable in stochastic models, since it adds additional
insight to the impact of parameters on model behavior. The
St index introduced here offers a simple and straightforward
solution towards this means.
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